RI 767

Bureau of Mines Report of Investigations/ 1972

The Methane Migration and Storage
Characteristics of the Pittsburgh,
Pocahontas No. 3, and Oklahoma
Hartshorne Coalbeds

UNITED STATES DEPARTMENT OF THE INTERIOR




Report of Investigations 7667

The Methane Migration and Storage
Characteristics of the Pittsburgh,
Pocahontas No. 3, and Oklahoma
Hartshorne Coalbeds

By Fred N. Kissell
Pittsburgh Mining and Safety Research Center, Pittsburgh, Pa.

UNITED STATES DEPARTMENT OF THE INTERIOR
Rogers C. B. Morton, Secretary

BUREAU OF MINES
Elburt F. Osborn, Director



This publication has been cataloged as follows:

Kissell, Fred N
The methane migration and storage characteristics of the
Pittsburgh, Pocahontas No. 3, and Oklahoma Hartshorne coal-

beds. [Washington] U.S.Dept. of the Interior, Bureau of Mines
[1972]

22 p. illus., tables. (U.S. Bureau of Mines. Report of investiga-
tions 7667)

Includes bibliography.

1. Methane. I. Title. (Series)

TN23.U7 no. 7667 622.06173

U.S. Dept. of the Int. Library




CONTENTS

ADSETACt . cee v esesoocesoocsssasoscsoscsososssessacscssscesossosacoscsssaccossos
INtrOdUCEION. coeasaaeacsarorsssossosscoossoossasossoscossoosassssacssssosessss
AcknowledgmentsS.ieeeeeeseescoececsocssosasosocoscocsacssososossscssssosascossscs
Gas pressure and flow meaSUreEMENES.cee.oceesccoscccscscscccscsccscssaasccass
Analysis Of PresSsSuUre CUTVES....eeeceececcccsccsccsacsososcssscscsoessscssccs
The crushed ZOMEe..eeseececsosesssoocsecocsecsscssocssccscosscssssccsssscssss
Calculation of permeabilityeeeseeee s casoeescsasasasssescessasscsansssssns
Increase in permeability with time....ecviverereerencersioeasocacocassona
Possible reasons for permeability increase..ccce-veeeceesoscoscccascesasnes
Permeability of different coalbeds and effect of overburden.........cc....
Anisotropy in permeability..ceeecsececescessacsssscacsscssoacsscacasnoses
Other variations in permeability..e.cececcececcscosesnocaoconcorosoacosans
CONClUSIONS . stveesroesccsoosconcasosssccorossasssssceccsssssosscssnssases
ReferencCeS.cuee oececoscsscssccsserosocosossosssasssossosscsesosssocsosssscssnssse
Appendix.--Applying the unsteady-state Darcy equation to experimental
pressure gradient CUTVES..eseeoseccocsccssssesssscsscssoassscanssossnses

ILLUSTRATIONS

1. Pressure curves from the Pittsburgh coalbed, Federal No. 2 mine,

holes 1 and 2......cceeeescescesscscsasscsocssssssossssessosccsosanoss
2. Pressure curves from the Pittsburgh coalbed, Federal No. 2 mine,

holes 3, 4, and S5.ue.:vveeeeceecossvesscsssscccsanssnsecacosonsacsanss
3. Pressure curves from the Hartshorne coalbed, Howe No. 1 mine,

holes 2 and 3. ...cceeeeecosssoaceosssscconsssssaosansssscsnonssasess
4, Pressure curves from the Hartshorne coalbed, Howe No. 1 mine,

holes & and 5. ... iieeesiienrocstonsoceasosososoocossacsssosossncsnsns
5. Pressure curves from the Hartshorne coalbed, Howe No. l mine,

holes 8 and 9..... e etteeecectareacoaaaann cececanas cececeacreaacnns
6. Pressure curves from the Hartshorne coalbed Howe No. 1 mine,

holes 10 and 1l....eceeeeceeoecoceccasescocacacoseaasocsaasacasasoas
7. Pressure curves for the Pocahontas No. 3 coalbed, Kepler mine,

holes 1 and 4...v.vivecercocononcnanenas e ebesaiacactiacasiacanaonas
8. Federal No. 2 mine, steady-state flow from 6-foot increments of

open hole.......vo.... ereetensan et eecereececcasnttacans cecsaas ercas
9. A mine entry in a coalbed with pronounced face cleat and

butt cleat development.........ceeuee. ce it cacrstenseaanens ceccannn

1. Coalbed permeability data....e.eeeeceecoccosaeonnnnons et etecercscscsas
2., Methane flow data..e.ceeececeocenecaans cecestecraseceescreensenns oo



THE METHANE MIGRATION AND STORAGE CHARACTERISTICS
OF THE PITTSBURGH, POCAHONTAS NO. 3,
AND OKLAHOMA HARTSHORNE COALBEDS

by

Fred N. Kissell !

ABSTRACT

Methane flows and pressures were measured in mines in the Pittsburgh,
Hartshorne, and Pocahontas No. 3 coalbeds. From the data, the permeability
of each of these coalbeds was computed. It was found to depend strongly on
the type of coal and on the amount of water in the coalbed, and it was found
to increase with time. All of the coalbeds had a high-permeability zone
adjacent to the face or rib, and the Pittsburgh bed exhibited directional
anisotropy. Surprisingly, little or no overburden effect was observed.

INTRODUCTION

The Bureau of Mines has been engaged in a program of drilling deep
horizontal holes into coalbeds from the working areas of coal mines (3-4).7°
These holes are sealed with inflatable packers, and the pressure of the gas
that seeps into the hole from the coal is measured. These pressures, in
conjunction with other data from the mine and the laboratory, can provide
information about the gas flow characteristics of the coalbed (7).

In this report, gas pressure and flow measurements from horizontal
holes in the Pittsburgh, Hartshorne, and Pocahontas No. 3 coalbeds are used
to calculate the coalbed permeability and methane sorption capacity. These
measurements show that the permeability of a coalbed depends greatly on the
nature of the coal, exhibits spatial variations and anisotropy, and exhibits
a remarkable increase with time, possibly owing to loss of water from the
coalbed.
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1Physical research scientist.
2Underlined numbers in parentheses refer to items in the list of references
preceding the appendix.



GAS PRESSURE AND FLOW MEASUREMENTS

Typically in this study, a horizontal hole was drilled into and perpen-
dicular with the solid rib of a return airway a short distance outby the
working face.® After drilling, this hole was sealed with packers; the
equilibrium pressure to be measured was achieved in a day or less. Two
methods of measurement used were as follows: (1) The hole was drilled in
increments, and the pressure at the back of the hole was measured at each
increment; (2) the hole was drilled to completion, the packers inserted,
and pressures measured simultaneously at points between the packers. The
same results were obtained using either method. The gas pressure curves
shown in figures 1-7 were obtained from either method.

Flows from some holes were measured by allowing the gas to bleed to the
atmosphere after pressure measurement. Generally, a steady-state flow was
obtained in less than 1 day. Flows were obtained in one of two ways:

(1) By opening the pressure line leading to the back of the hole and measuring
the steady flow rate of methane seepage into the last few feet of open hole;
and (2) by inserting a single packer near the collar of the hole and measuring
the rate of methane seepage into the entire hole.

ANALYSIS OF PRESSURE CURVES

The curves of figures 1-7 were used to calculate the permeability of the
coalbed in the location where the horizontal hole was drilled. To do this,
it was assumed that methane flow out of the coalbed follows the unsteady-
state Darcy equation for gas flow. It also was assumed that the coalbed is
a homogeneous, semi~infinite slab, the end of the slab being the coal face.
Before mining, the slab is at uniform bed pressure, P .., at the time of
mining, the pressure at the end of the slab (face) is reduced to atmospheric.
Finally, it was assumed that the desorption from the pore structure of the
coal to the coalbed fractures is fast compared with the time required for the
gas to flow through the fractures from deep within the slab to the face or

rib (7).

The Darcy equation is

agPE _ n_s —822

3x® KP ot

Here P is the gas pressure (atmospheres), x is the distance into the coalbed

from the working face (centimeters), T is the viscosity of methane (centi-

poises), K is the permeability of the coal (darcy), S is the sorption capacity

volume adsorbed per atmosphere
volume of coal

of the coal ], and t is time (seconds).

SA11l the mines studied were being worked by the advancing room-and-pillar
system of mining in the sections where measurements were made.
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FIGURE 1. - Pressure Curves From the Pittsburgh Coalbed, Federal No.2 Mine, Holes 1 and 2.
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FIGURE 7. - Pressure Curves for the Pocahontas No. 3 Coalbed, Kepler Mine, Holes 1 and 4.

This equation has no exact solution, but an approximate solution is (6)

2 _ p2
P2 (x,t) P n 1
= erfc T
P2 - P? 2t2
atn seam d

where erfc is the complementary error function and erfc = 1 minus the proba-
bility integral. Values of the probability integral may be obtained from

standard tables. Here t, is equal to dimensionless time = S , P(x,t) is
n%=S
the pressure in the coalbed at point x and time t, PSeam is the gas pressure
in the undisturbed coalbed, Do is atmospheric pressure, t is the elapsed
time since mining, and P is the average pressure at x. The ratio K/S or
permeability
sorption capacity

]is obtained by fitting the best theoretical error function

curve to the experimentally measured pressure. Table 1 gives the K/S values
obtained from each hole, together with K/S values calculated from a number of
published pressure curves (2, 7).



089 GaT - T°1 4 0§ 0c¢T M % |'BA "M ‘9T1TA9UI]
089 GGl - 9¢* T 0CT 01 S ! ¢191day| "¢ "ON sejuOyBO0Jg
000°¢ €99 - 087 006 0T 081 - € “BA
000°C €99 - 0°¢C 9°¢ 081 0¢ - z ‘urejunoy uedYy
000°¢ $99 9°8 (4% LG" 06% ! - 1 ¢9dTa3eRd| " € "ON SBIUOUBOO]
004 661 - ¢t A G6 0% q 11
00. 661 ¢ T [4 0¢ eVl q 01
G8¢ 0L 6% G* T LE 8Y d 6
68T 0L - G’ T Le 8% d 8
G8C 6q - G’ T Y4 16 S G
G8¢ 99 9°'1 G* T G¢ 16 S K4
G8¢ GG Al T° [ oY 16 N 13 "BINO ‘Iduda®al
G8¢ LS LR 80" 61" 0 09 N [4 ‘T "ON @MO{|[*®******°-3uioysiiey
008 0ct 0¢ 181 00T‘T 4 16 N S
008 0¢t1 'Yy 159 00¢ el 09 N 7
008 0c¢T 61 ¢ ¢8 006G 4! Gl M ¢
008 0ct 71 L® 7 09 81 S [4 "BA TM ‘MOTAITRY
008 0c1 0¢ L4 Ly 81 6L S 1 ‘7 "ON TBILPOI| - y3Ingsiirg
e1sd 13 ‘sseu S1sd skep
a3 ‘eanssaad| -yoT1uy3l pu Yy ‘13 06 | ‘Sututw| uoTl | °*ON
‘uapang pPaq suoz |431T1Iq® S/ Je 20uls |-2911(Q|°]0H|uUOT3IEO0T puER SUTW pa2q1e0)
-I9A0 paunssy| paysnia)| -swisg sanssaig| ouwrg
elep A3T7TqEOWIad pPaqIeo) - T ATAVL



THE CRUSHED ZONE

It has been shown (7) that no simple theoretical curve can be fitted to
the experimental pressure curve unless the "crushed zone' is taken into
account. The crushed zone is a region of high permeability in the coalbed
adjacent to the face and rib and is probably similar to the relaxed zone
around a longwall face. Presumably, it forms because coal in this region
is unable to withstand the compressive load of the overburden. Partial
crushing greatly increases the permeability of the region so that gas emerging
from the intact coalbed behind the zone flows easily to the face or rib. The
thickness of the crushed zone is calculated by fitting the best theoretical
curve to the pressure gradient and extrapolating the theoretical curve
to zero gage pressure (7). The distance from the face to this zero pressure
point is the crushed zone thickness (fig. 1).

The calculated crushed zone thickness for figures 1-7 are shown in
table 1.% A crushed-zone thickness from a previous report also is included
(7). These zones ranged in thickness from 1.6 to 20 feet and averaged about
10 feet. Hargraves (5) has published gas pressure data for a number of
Australian mines. 1If the curves from this data are extrapolated to zero
gage pressure most of them also yield a crushed zone thickness of about
10 feet.

It might be expected that a rough correlation exists between the thick-
ness of the crushed region and the amount of overburden as shown in table 1,
but this does not seem to be the case. 1In part, this lack of correlation is
probably because shallow mines have pillars and supporting members of smaller
dimensions. Regardless, a high-permeability zone in the coal adjacent to the
face and rib seems to be a feature common to all the mines even though the
roof was not being caved.

It should be mentioned that pressure curves do not provide the sole
evidence for this high-permeability zone. Parsons (l1) has measured dilations
of pillars in the Pittsburgh coalbed and has found differential dilations up
to a depth of 15 feet in pillars.

CALCULATION OF PERMEABILITY
Fitting the theoretical error function curve to the experimental pressure

curve only yields the ratio K/S ( peE@eability.t ].
| sorption capacity

Other methods must be

used to obtain K or S independently. K can be estimated if both the pressure
data from a hole and the methane flow from the face or rib region surrounding
the hole are known (7). First, the pressure curve is fitted to the best
theoretical curve, and the crushed zone thickness is obtained. Then, the
theoretical curve is differentiated, and the slope at zero gage pressure is
calculated. This slope and the face or rib flow are inserted into the steady-
state Darcy equation (Q-]), and K is obtained.

4Some of the pressure curves, such as Howe mine hole 11 in figure 6, do not
have points close enough to the face to warrant extrapolation.
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For instance, when Federal mine hole No. 4 was drilled into the rib, a
careful methane survey was made in the airway adjacent to the rib. Methanom-
eter readings were taken 150 feet upstream and downstream of the hole.
Assuming that all of the methane comes from the rib, it was estimated that
the average square foot of rib was emitting 7.7 cubic feet of methane per day.
A permeability of 33 millidarcys was calculated from this. Table 1 shows
200 millidarcys for K/S of hole 4, and so S is 0.165. This is much lower
than the 0.56 reported (7) for the Pocahontas No. 3 coalbed. Some of this
decrease is to be expected, for laboratory sorption experiments on dry coal
powders conducted at the Bureau of Mines show that the sorption capacity of
the Pittsburgh coal is about three-quarters that of the Pocahontas No. 3 coal.
However, the main reason that S is low for the Pittsburgh coalbed is that the
assumption of fast desorption is not a good one in this case because of the
nature of the coal. (See appendix.) Methane emission data have been obtained
from ribs in the Howe No. 1 mine (Hartshorne coalbed), but the emission level
was too low for accurate evaluation. The Hartshorne coal is similar petro-
graphically to the Pocahontas No. 3 coal, and T. C. Ruppel® has found that
the equilibrium adsorption isotherms are about the same. So, the in-situ
sorption may be assumed to be about 0.5.

Table 1 gives values of permeability for the rest of the locations,
assuming that S is 0.56, 0.165, and 0.5, for the Pocahontas No. 3, Pittsburgh,
and Hartshorne coals, respectively. This table shows that permeability varies
with the age of the area in which the hole was drilled (the elapsed time since
mining at that point ceased), with the type of coal; and in the Federal No. 2
mine, with the direction of the hole.

INCREASE IN PERMEABILITY WITH TIME

The most notable feature in table 1 is a substantial increase in perme-
ability as the age of the region around the horizontal test hole increases.
For instance, in the Federal No. 2 mine, holes 1 and 2 were drilled in the
same return airway. Hole 1 was 800 feet outby the working face, and the face
was at this point 75 days earlier. Hole 2 was about 50 feet outby the face,
and the face was at this location 18 days earlier. The permeability of the
coalbed at hole 1 is more than 10 times greater than at hole 2. The same
effect is illustrated by hole 5 in the Federal mine; by holes 10 and 11 in
the Howe mine, by holes 1, 2, and 3 in the Beatrice mine, and by holes 1
and 4 in the Kepler mine. All three coalbeds show the effect.

The reason for this increase in permeability with time is not entirely
clear. Several possibilities are considered in the appendix. These include
incorrect estimation of bed pressures, problems associated with the assump-
tion that the coalbed at any given location begins to drain when that location
is mined, possible incorrect pressures at long times owing to a delay in
micropore desorption, and an assumption of constant sorption capacity.
However, the variation in permeability appears too large to be accounted
for by any of these.

5Research chemist, Pittsburgh Energy Research Center.
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The borehole gas-flow data shown in table 2 provides evidence that this
increase in permeability is real and not the result of the assumptions made in
applying the unsteady-state Darcy equation. It is known that as methane seeps
out of the coalbed into the mine, the gas pressure in the coalbed falls. If
the coalbed permeability were constant, a decrease in gas pressure would lower
the rate of emission from the horizontal test holes, but this never happened.
For example, Federal hole 5, which was in an area 30 months old, had 4 psig
at the back of the hole; whereas hole 4 in an area 2 months old had 21 psig.

A constant permeability would indicate a much higher flow from hole 4, but as
table 2 shows, the flow rates were about the same. Since the flow rate
corrected for pressure and depth® is roughly proportional to permeability,

the permeability of the coalbed near hole 5 appears to be considerably larger
than that of the coalbed near hole 4. Exactly the same effect is shown for
holes 1 and 2 of the Beatrice mine, holes 1 and 4 of the Kepler mine, and it
appears also to a much lesser degree at holes 10 and 11 of the Howe mine.
Always, an increase in the age of an area caused an increase in permeability.”
The result of this effect is that holes drilled into older, low-pressure areas
often seem to yield as much gas as holes drilled into freshly mined areas.

Gas yield performance is of critical importance in coalbed degasification.

A more critical test, especially with regard to degasification, would be
to measure the flow from a single hole over a long time period rather than
measure flows from holes in different age areas, as is done in table 2. The
Bureau of Mines has recently drilled a 400-foot hole in a freshly mined area
of the Federal No. 2 mine. The initial gas flow of 100,000 cubic feet per
day continued virtually unabated for 2 months.

At least one other investigator has observed a similar increase in
permeability. Stewart (l4), in a study of Australian coalbeds, measured
incremental flows from a borehole in a manner similar to that used to obtain
the data of figure 8. He observed a peak in the flow, whereas in figure 8
the flow increases smoothly with depth. 1In 30 days this peak moved inward
from a depth of 6 feet to about 21 feet. Stewart attributed this change in
permeability to "destressing," a reduction in stress with relaxation along
cleat and bedding planes. This explanation might be valid for regionsclose
to the face such as Stewart observed. (The crushed zone is probably such a
destressed region.) However, hole 2 in the Beatrice mine (which exhibits a
vastly increased permeability compared with hole 1) was 250 feet deep, and
it seems unlikely that any stress removal would extend to this depth. It is
significant that the crushed zone (which has been created by stress effects)
is no thicker in older regions (table 1).

. flow A C
6 T 5 S c
Shown in table 2 as fpressure X depth ]’ or [B X depth]’ or[B] ’

7Since other factors affect permeability, there appear to be some exceptions,
which will be discussed later.
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POSSIBLE REASONS FOR PERMEABILITY INCREASE

Present evidence suggests that the increase in permeability is due to a
loss of water from the coalbed rather than a reduction in stress. Drill crews
frequently have noticed that holes drilled into freshly mined faces and ribs
emit much more water than those drilled in faces or ribs mined months earlier.
From natural gas reservoir studies (6), it is known that the amount of water
in the reservoir rock strongly affects the permeability to gas; more water
results in less gas permeability. TIf a freshly mined area of a coalbed
contains water, its permeability to gas is relatively low. However, as the
water and gas drain into the mine, the water content of the coalbed is reduced,
and the gas permeability increases.,

Aside from casual observation, the only firm evidence for this as yet is
from borehole waterflows. Some borehole gas and waterflow data were obtained
by the Bureau of Mines during a recent experiment at the Beatrice mine. 1In
an attempt to drain methane from the coalbed ahead of the working face,
several holes were drilled ahead of the face. One of these emitted 7,260 cubic
feet of gas per day and 3 gallons of water per hour (per 100 feet of hole) on
the second, third, and fourth days after drilling. However, on the sixth day,
the waterflow dropped to 2 gallons per hour and the gas flow increased to
7,960 cubic feet per day. This was in a freshly mined area. Later, in the
same mine, a 100-foot hole was drilled into an area mined 30 days earlier
(shown as Beatrice hole 2 in tables 1 and 2). The waterflow was 0.2 gallon
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per hour, but the gas flow was about the same (7,500 cubic feet per day,
table 2) as from the hole in the freshly mined area, even though the pressure
was about half that of the freshly mined area.

More data on waterflows from boreholes are required to establish how much
variation in permeability is caused by loss of water. It is likely that the
total quantity of water involved is much less than that of a natural gas
reservoir; the fracture porosity of coal has been estimated at less than
1 percent. Most, 1f not all, of the water reaching the face evaporates as
soon as it exudes from the coalbed; this may be why only one of the three
mines investigated had puddles of seepage water on the mine floor.

Another factor contributing to the permeability increase may be coal
shrinkage. This was first suggested by Briggs (1). Moffat and Weale (10)
found that coal expands as methane is adsorbed and shrinks as it is desorbed.
If the pressure is reduced from 40 atmospheres to zero, the bulk shrinkage is
about 0.1 percent. Rarely does the pressure in coalbeds fall quite this
much, but even with lower pressures such an effect may be great enough to
open up cracks in the coalbed.

It has been suggested (13) that the adjacent strata will have an effect
on the pressure gradient; the notion being that the gas from the coalbed
may leak through the adjacent strata to the mine, thus short-circuiting the
coalbed. The roof and floor in a mine will converge with time; this is likely
to open cracks in the roof and floor strata. Given the way the analysis was
done in this report, such an opening of cracks would be interpreted as a
permeability increase. However, results from the horizontal boreholes
indicate the permeability increase is real; there is no other way to explain
the high flow rates from low-pressure holes in older areas.

PERMEABILITY OF DIFFERENT COALBEDS AND EFFECT OF OVERBURDEN

If the time effect is taken into account, it is apparent from table 1
that the Pittsburgh coalbed is much more permeable than either the Hartshorne
or Pocahontas No. 3 coalbeds. This difference in permeability also is
reflected in the gas-emission rates from the horizontal holes (table 2).

The gas-emission rate, corrected for differences in pressure and depth

[ flow ] , is much higher for the Pittsburgh coalbed than for
pressure X depth

the others.

The permeability of coal measured in the laboratory greatly depends on
the degree to which the sample is compressed (12), thus an inverse relation-
ship might be expected between coalbed permeability and overburden depth.

No such relationship is indicated in table 1. The deepest coalbed, Pocahontas
No. 3, has a low permeability, which is expected. However, the permeability
of the Hartshorne coalbed, which has the least cover, is just as low. More-
over, holes 10 and 11 in the Howe No. 1 mine were drilled in an area of the
mine where the cover was 700 feet thick. No obvious variation in permeability
exists between these holes and others in the same mine that were drilled where
the overburden was only 285 feet. The only evidence for an overburden effect
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in table 1 is the 0.56 millidarcy permeability given for Kepler mine hole 1
which may be compared with 0.32 for Beatrice mine hole 1. The difference in
overburden is substantial (680 feet compared with 2,000 feet), but these
represent relatively high overburden pressures. Patching (12) has shown that
by far the greatest permeability changes take place below compressive stresses
of 500 psi.

The nature of the coal may affect permeability more than overburden
depth. Both the Pocahontas No. 3 and Hartshorne coals are friable, low-
volatile, highly fractured coals, whereas the Pittsburgh coal is hard and
blocky with far fewer (but more prominent) fractures. Still another factor
may be the amount of water in the coalbed. The only conclusion to be drawn
is that permeability appears to be affected by the nature of the coal and
other factors more than by overburden depth.

ANISOTROPY IN PERMEABILITY

Permeability can be expected to have directional anisotropy in coalbeds
that have pronounced face cleat and butt cleat characteristics. The perme-
ability should be greatest in the direction of the surface of the face, or
major, cleat. The face cleat is a continuous joint surface that crosses
bedding planes in the coal and extends for many feet. On the other hand,
the butt cleat is a short, discontinuous joint surface that often terminates
against a face cleat. The surface of the butt cleat often is curved, and the
butt cleat occurs less frequently than the face cleat. It follows that
regions of the coalbed drained primarily by face cleats will be drained of
gas more easily and will, therefore, exhibit lower pressures than those
regions drained by butt cleats (given equal drainage times). The permea-
bility values listed in table 1 are simply calculated using the hole pressure
(the pressure curve); the lower the hole pressure, the higher the calculated
permeability.

Of the three coalbeds listed in tables 1 and 2, the Pittsburgh bed is
the only one with pronounced face cleat and butt cleat development. The
face, or major, cleat direction is roughly east-west, whereas the butt cleats
trend® north-south. Hole 3 was the only hole drilled parallel to the face
cleat direction into a region drained by the face cleats, and should give
the greatest permeability (fig. 9 and table 1). The effect is obscured
somewhat by the apparent increase of permeability with time, but it is
clear that the relatively high value of 82.5 millidarcys listed for hole 3
is not the result of drilling into an old region.

The gas flow data from Federal mine holes 3 and 4 give additional
evidence for a permeability anisotropy. Hole 4 was drilled parallel to the
butt cleat direction into a region drained by butt cleats; therefore, the
permeability calculated from the pressure curve (33 millidarcys) is lower

®Parsons (11) has measured the lateral compressive stresses in strata adjacent
to the Pittsburgh coalbed and has found that the major lateral stress is
in an east-west direction. Thus the butt cleats are squeezed more
tightly, and the permeability difference is even more enhanced.
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than that of hole 3 (82.5 millidarcys)(fig. 9). Despite this lower perme-

ability, the flow of gas corrected for differences in pressure and depth,
flow rate

pressure x depth

that is L , is over twice that of hole 3 (table 2). The
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reason for this unusual effect is that the hole pressures are controlled by

the permeability parallel to the hole, and therefore the 33 millidarcys from
hole 4 is a butt cleat permeability. However, the factor governing the
borehole flow rate is the permeability of the cracks the hole intersects, and
not the permeability parallel to the hole. Hole 4 intersects the face cleats,
whereas hole 3 intersects butt cleats. It follows that hole 4 intersects more
permeable cracks than does hole 3, and that the flow from hole 4 should be
greater than from hole 3 over and above what would be expected from differences
in pressure and depth. Table 2 confirms this.

If holes give different flow rates for different directions, the same
might be expected for the mine entries. The Bureau of Mines recently did a
careful methane survey in conjunction with a water-infusion experiment in the
No. 2 west mains of the Federal No. 2 mine. It was found that in this loca-
tion the methane emission from the solid rib was far greater than the emission
from the working face (the section was idle at the time, so there was no con-
tribution from the advance of the mining machine (7)). This difference in
emission rates was not surprising, for the rib intersected the face cleats
(as in hole 4), and the face was draining the less permeable butt cleats.

The same effect also took place elsewhere in the mine, with face cleats
yielding more gas than the butt cleats (other things being equal). It has
been implicitly assumed that the rib lines are perfectly parallel with the
cleats. This is true in the Federal No. 2 mine. However in many other
mines in the Pittsburgh coalbed the rib line and cleat vary by a few degrees.

OTHER VARIATIONS IN PERMEABILITY

It has been suggested (8-9) that in longwall faces a tight abutment zone
of abnormally low permeability exists between the crushed zone of high per-
meability and the intact coalbed. 1If such an abutment zone existed in mines
worked by the advancing room-and-pillar method, a region of the pressure
curves shown in figures 1-7 would be steeper than that expected from theory.
No distinct evidence of such a steep region can be seen in most of these
figures, nor in those publications cited previously (2, 7). There is a
possibility that this zone is very narrow and easy to miss; however, at least
one hole (Federal mine hole 4, fig. 2) was tested with the pressure points
close together so that variations over a small region would not be missed.
Flow measurements were taken for each pressure point in the same hole
(fig. 8). The flow curve closely parallels the pressure curve shown in
figure 2, which indicates that no sharp variations in permeability with
distance exist beyond the crushed zone in this case.

The possibility of an abutment zone in room-and-pillar workings cannot
be ruled out completely. Theory based on constant permeability beyond the
crushed zone would indicate that for inactive areas, the pressure curve should
not level off in the first 100 feet. For instance, in Federal mine holes &
and 5 (fig. 2) the pressure is still climbing at the last measured point.
However, in hole 1 (fig. 1) the pressure appears to approach an asymptote,
which might be caused by a region of low permeability between 20 and 40 feet.
Hole 10 in figure 6 shows the same effect.
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Still other variations in permeability may exist for reasons that have
not been established. For example, in the Howe mine, holes 2 and 3 gave lower
permeabilities than holes 4, 5, 8, and 9. Holes 2 and 3 were in a different
location from that of the others, and the coalbed may have been wetter here.
It is also possible that an incorrect bed pressure was assumed.

It should be emphasized that the coalbed properties given in this report
have a limited applicability, and the properties cannot be expected to predict
gas flow into every part of a mine. For example, in the Kepler mine, holes 1
and 4 are 1,900 feet apart (hole 1 is in the east mains and hole 4, in the
south mains). The bed pressure of 155 psia was obtained by extrapolating the
pressure curve of hole 1, and this was also assumed to be the bed pressure at
the location of hole 4. A mile south of the mine a vertical well was drilled
into the virgin coalbed. It was packed,and a pressure of 173 psia was
measured” and therefore the 155 psia from extrapolation was not too bad.

However, in the west mains about 3,000 feet to the northwest of holes 1
and 4, the situation is entirely different. The west mains are much less gassy
than the south and east mains, and horizontal holes drilled into ribs give
only 10 to 15 psig at the end of the hole. For some reason, the coalbed in
the area of the west mains contains less gas than in other areas of the mine.
The cause of this is not clear. It may be due to a fault in the area, or to
the fact the west mains are close to a region where the overburden is only
310 feet instead of the usual 680 feet. This report has not taken such
effects into account.

It must be recognized that a permeability of 0.56 or 1.1 millidarcys, as
shown in table 1 for the Kepler mine, probably would not permit such extreme
variations in pressure in just 3,000 feet to exist. A permeability of
1 millidarcy is not large, but over geologic time it is enough to insure a
relatively constant coalbed pressure over very wide areas. The only conclu-
sion is that the values of permeability shown in table 1 are for coalbeds
that have already been influenced by the mining process and that the per-
meability of the virgin coalbed was much lower.

CONCLUSIONS

The in-situ permeability of three coalbeds has been calculated from field
measurements. The findings are as follows:

1. The nature of the coal seems to have a more important effect than
overburden pressure on permeability.

2. Where face and butt cleats are prominent, the coalbed is more
permeable in the direction of the surface of the face cleat.

3. A high-permeability crushed zone along ribs and faces appears to be
a common feature of all mines.

9This pressure was measured in conjunction with the BuMines program for
coalbed degasification by vertical wells.
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4, Beyond the crushed zone there is no evidence for an abutment zone
of low permeability.

5. The effect of in-situ water on the permeability to gas is very great.
Older regions of a mine from which the water has drained have vastly increased

permeabilities. The practical effect of this is to maintain a high borehole
flow.

6. The permeabilities given in table 1 are for coalbeds that have

already been affected by the mining process. Virgin coalbed permeabilities
are probably much lower.

The analysis presented here is preliminary. Its objective is to
delineate the major factors that control coalbed gas emission. A better
theoretical treatment must await much more comprehensive field data.
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APPENDIX. --APPLYING THE UNSTEADY-STATE DARCY EQUATION
TO EXPERIMENTAL PRESSURE CURVES

There are some difficulties involved in applying the Darcy equation to
the pressure curves. For the most part the difficulties listed are due to the
lack of sufficient experimental data.

1. There is difficulty involved in obtaining a value for P .. » the
pressure before mining. A major assumption in the analysis is that the coalbed
is a slab at uniform pressure Pseambefore mining, and that at time zero the
face is reduced to atmospheric pressure. This probably is not a bad assump-
tion in coalbeds of low permeability where the pressure curve is very steep
and Pseam can be measured at the back of a 100-foot borehole drilled into a
fresh area. However, in a permeable coalbed such as the Pittsburgh bed,
the slab of coal begins to drain and lose gas pressure long before it 1is
mined, and the initial pressure is unknown. The best that can be done under
the circumstances for permeable coalbeds is to extrapolate the pressure curve
that gives the highest pressures. Hole 2 (fig. 1) was used to obtain P
for the Pittsburgh coalbed.

2. The desorption of methane from the pore structure of the coal is
fast as compared with the Darcy flow to the face or rib through cracks in the
coalbed. Thus, the measured pressures from deep within the coalbeds are
correct indications of the amount of gas contained in the coal (7); that is,
the pressure and the amount are in equilibrium. It follows that the pressures
close to zero measured at the face would mean that virtually no gas is left
in the coal close to the face.

The Bureau of Mines has collected some coal lumps at an active face in
the Federal No. 2 mine and sealed them in a container. The methane given off
from the container for the next 2 months was measured. During this time the
coal gave off an amount of methane equivalent to 4 cubic centimeters per gram
of coal. This amount of methane corresponds to an equilibrium adsorption
pressure of about 50 pounds per square inch, absolute. On the other hand,
while the sample was in the intact face, it was subjected to only 1 atmosphere
of pressure. It appears then that there is more gas in the Pittsburgh coal
than the pressure in the fractures would indicate. This would not affect the
computed coalbed permeability because permeability is defined in terms of the
pressure curve and the observed emission rate. However, it would cause the
sorption capacity to be lower than that expected from laboratory sorption
experiments, which are done only under equilibrium conditions.

Another way of stating the same thing would be to say the Pocahontas
No. 3 coalbed has a good internal equilibrium; that is, deep in the coalbed
the amount of adsorbed gas is in equilibrium with the gas pressure in the
cracks. It follows that the computed sorption capacity is close to values
obtained from equilibrium laboratory measurements. On the other hand, the
Pittsburgh coalbed does not have good internal equilibrium. Some gas is
retained in the coal as the fracture pressure falls, and the result is a
lowered sorption capacity.
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3. Another assumption is that the sorption capacity; that is, the

volume adsorbed per atmosphere
[ volume of coal
would mean the equilibrium adsorption isotherm is linear, when in fact it is
known the methane-coal isotherm is not linear, but follows the Langmuir
equation. Dry Pocahontas No. 3 coal adsorbs 10 cubic centimeters per gram of
methane at 10 atmospheres pressure. (All volumes are given at standard
temperature and pressure.) If a coal density of 1.3 grams per cubic centi-
meter is assumed, this corresponds to a sorption capacity of 1.3. At
20 atmospheres, 13 cubic centimeters per gram is adsorbed, and this corre-
sponds to a sorption capacity of 0.84. The Hartshorne coal is similar.

] is constant. A constant sorption capacity

Just a few percent moisture in coal considerably decreases the amount
adsorbed, therefore it is not surprising that the in-situ sorption capacity
for Pocahontas No. 3 coal should be 0.56. 1In any case, an increase in the
sorption capacity, S, as the pressure falls is not likely to explain why the
quantity K/S rises with time.

4, A more exact solution to the Darcy equation for unsteady-state gas
flow is available (6, p. 421), and, if it is used the calculated permeabil-
ities are somewhat lower. However, the major conclusions about the crushed
zone, directional anisotropy, permeability increase, and so forth, are all
unchanged.
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